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SUMMARY

Collector scrolls on high performance centrifugal pumps are currently designed with
methods which are based on very approximate flowfield models. Such design practices result
in some volute configurations causing excessive side loads even at design flowrates. The
purpose of this study was to develop and verify computational design tools which may be used

to optimize volute configurations with respect to avoiding excessive loads on the bearings.

The new design methodology consisted of a volute grid generation module and a
computational fluid dynamics (CFD) module to describe the volute geometry and predict the
radial forces for a given flow condition, respectively. Initially, the CFD module was used to
predict the impeller and the volute flowfields simultaneously; however, the required
computation time was found to be excessive for parametric design studies. A second
computational procedure was developed which utilized an analytical impeller flowfield model
and an ordinary differential equation to describe the impeller/volute coupling obtained from the
literature, Adkins & Brennen (1988). The second procedure resulted in 20 to 30 fold increase

in computational speed for an analysis.

The volute design analysis was validated by postulating a volute geometry, constructing
a volute to this configuration, and measuring the steady radial forces over a range of flow
coefficients. Excellent agreement between model predictions and observed pump operation
prove the computational impeller/volute pump model to be a valuable design tool. Further

applications are recommended to fully establish the benefits of this new methodology.
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NOMENCLATURE

C, static pressure coefficient

C, function of the moments of the cross-sectional area
C,,G,,C, turbulence modeling constants

C. turbulence modeling constant

D, pressure coefficient at volute inlet
d numerical dissipation terms of the discretized governing equations
F numerical fluxes in the £-direction of the discretized governing equations

F{t} integration constant in Bernoulli’s equation
F,, steady fluid force acting on the impeller in the x-coordinate direction for a minimum
force spiral volute
steady fluid force acting on the impeller in the y-coordinate direction for a minimum
force spiral volute
steady fluid force acting on the impeller in the x-coordinate direction
steady fluid force acting on the impeller in the y-coordinate direction
diffusion metrics
total head (h" = 2h/p(’R,?)
Jacobian of coordinate transformation
turbulence kinetic energy
pressure in impeller
turbulent kinetic energy production rate
static pressure
flow primitive variables
impeller radius
radial component of polar coordinate system
source terms of the governing equations
cross-section area of a control volume perpendicular to the flux vector
length in tangential direction
time
volume-weighted contravariant velocities
flow velocity components in cartesian coordinate
velocity in volute
relative flow velocity in impeller
cartesian coordinate in the direction from volute center to volute tongue
cartesian coordinate in the direction normal to the x-coordinate
cartesian coordinate
relaxation parameter of the pressure correction equation
perturbation function for impeller flow (in Appendix A)
€ turbulent kinetic energy dissipation rate
distance between impeller and volute centers (in Appendix A)
€ /R, (in Appendix A)

M '
e %

Q

TR =S

-

m-ﬂ

N X< LEC™ 2 DB>0" DO

€1,€9,€3 coefficients of the numerical dissipation terms
¢ flow coefficient

0% angle of flow path through impeller

U effective viscosity
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fluid viscosity

eddy viscosity

radian frequency of the impeller (shaft) rotation
radian frequency of the circular whirl orbit
total head rise coefficient

fluid density

turbulence modeling constant

angular component of polar coordinate system

7,6 coordinates of computational domain

Subscripts

c
exp

component of cos(wt)

experimental result

location of a grid point

centered impeller value (nondimensionalized)
component of sin(wt)

partial derivative components in the cartesian coordinate
impeller inlet

impeller discharge

Superscripts

n
n+1

b

*

variables at previous time step

variables at current time step

correction value

measurement made from frame fixed to rotating impeller
nondimensionalized quantity
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1.0 INTRODUCTION

1.1 Overview

Collector scrolls on high performance centrifugal pumps are currently designed with
methods which are based on very approximate flowfield models. Such design practices result
in some volute configurations causing excessive side loads even at design flowrates. The
purpose of this study was to develop and verify computational design tools which may be used

to optimize volute configurations with respect to avoiding excessive loads on the bearings.

The Space Shuttle Main Engine’s (SSME) High Pressure Fuel Turbopump (HPFTP)
experiences such large side loads, that even after a short running time, the useful life of the rotor
bearings is consumed and the bearings require replacement. While impeller/volute interactions
produce side loads, current opinion is that the excessive side loads that require frequent bearing
replacement is the result of other influences. The High Pressure Oxidizer Turbopump also
experienced high side loads, which was a factor in the Alternate Turbopump Development
(ATD). The ATD indeed produced very low side loads, but it was found that purposely
increasingly these side loads improved the operation of the pump. Fluid film bearings are
currently being strongly considered for turbopump application. The use of fluid bearings
increases concern over rotordynamic effects. All of these concerns are benefited by an increased
understanding of impeller/volute coupling effects caused by geometry and flowfield interactions.
Thus, the ability to computationally simulate turbopumps more accurately would advance pump

technology required for launch vehicle design.

The computational impeller/volute pump model was developed by creating three modules:

1. A grid generation code was written to expedite the accurate specification of the volute

geometry with a small number of adjustable parameters.

2. A state-of-the-art computational fluid dynamics (CFD) code, FDNS, was used to simulate

a fully coupled impeller/volute interaction and to determine side forces caused by the



SECA-FR-95-08

pump operation.

3. An existing analytical model developed by Adkins and Brennen (1988) was used to
represent the impeller flow and the interaction between the impeller and the volute
flowfields. This module was developed to affect an improvement in computational

efficiency over the fully coupled impeller/volute CFD model.

These three modules constitute an accurate and practical code to design volute configurations.
Existing test data and experimental tests conducted at Caltech as part of this study were used to

provide verification for the computational impeller/volute pump model.

This report describes the development of these modules and their verification. The
format of the presentation shall be: a brief summary of impeller/volute behavior, a description
of volute grid generation, results of CFD simulations of impeller/volute flows, the design of a

test volute, and the experimental verification of the performance of the test volute.

1.2 The Nature of the Problem

To eliminate the side forces on the pump bearings, the imbalance of radial forces created
by the non-axisymmetric discharge conditions of the impeller flow into the volute must be
eliminated. Currently, high performance centrifugal pump design is not performed by using
CFD methodology. The analytical methodology which is utilized is typified by the analysis of
Adkins and Brennen (1988), in which the interactions that occur between a centrifugal pump
impeller and a volute are described with approximate analytical models. Treatments of the
inability of blades to perfectly turn the flow through the impeller and of quasi-one dimensional
flow through the volute are the major elements of this analysis. Since this study involves design
concepts, the understanding of pump operation derived from previous experimental studies will

be reviewed to establish the basis for future model development.

The design of the SSME turbopumps follows the trend toward higher speed and higher

power density turbomachinery which creates a greater sensitivity to operational problems. This
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study focused on the steady, radial forces acting on the impeller and its bearings due to the flow
through the pump diffuser and volute. Even though the SSME HPFTP has three stages,
attention was directed to a single stage pump so that a meaningful point of departure for CFD
design tool development can be established. Using present design methods, radial side loads can
be minimized for design flow rates for a single stage pump by properly matching an impeller
and volute, as illustrated in Fig. 1 taken from Chamieh (1983). For the configuration shown,
the design condition occurs when the flow coefficient has a value of 0.092. A recent account
of fluid induced impeller forces is presented by Brennen (1994). However, such forces are not
zero if design flowrates are not realized and if inlet flows are not ideal, as would be the case if

the inlet flow were from a previous stage.

The steady impeller fluid force components, F,, and F,,, shown in Fig. 1 are defined in
terms of a coordinate system in which x is the coordinate defined by the impeller centerline and
the volute cutwater (tongue); y is normal to x in the direction of the impeller rotation. F,, is
nearly optimum since it is very small over a wide range of flowrates about the design point.
The behavior of F,, is much more difficult to optimize since it varies from large positive values
to large negative values as the flow coefficient varies through the design flow condition. This
point is emphasized by plotting the magnitude of the impeller force, F,, as shown in Fig. 2,
Chamieh (1983). F, is not zero, but it is a minimum for the spiral volute (volute A) when F,,
passes through zero, i.e. the design point. To eliminate the side forces, F, and F, must
simultaneously be zero. The best one could hope for is to design the volute/diffuser such that
the "sweet-point" in the curve shown in Fig. 2 is close to zero for a wide range of flowrates
about the design point. Hence, the design goal for selecting volute/diffuser configurations is to
make the behavior of F,, approach that of F,, in a plot such as that shown in Fig. 1. The CFD
model volute flow developed in this study was used to investigate conditions under which such

desired behavior can be obtained.

The influence of volute shape is also shown in Fig. 2 by a comparison of a spiral volute
to a circular volute (volute B), presented by Chamieh (1983). Volute B becomes the optimum
shape as the flow coefficient approaches zero, as evidenced by this figure. This qualitative

effect is typical of the predictive behavior which any CFD model must exhibit to be useful as
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B and for face seal clearances of 0.79 mm. Rotor speeds in rpm and their corresponding
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Fig. 2 Normalized average volute force for Impeller X and face seal clearances of 0.79 mm.
Open and closed symbols represent data for Volutes A and B respectively, from Chamieh
(1983).
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a design tool for centrifugal pumps.

Experimental studies have also been conducted to optimize volute configurations. Figure
3 from Agostinelli, et al (1960) shows the effect on the radial forces of using a volute which is
initially circular and then becomes spiral, as the flow progresses from the cutwater to the
discharge. This figure also shows the effect of using a double volute, which is nearly ideal for
reducing radial forces at all flow rates. However, other design penalties, such as additional
weight and structural complexity in geometrically small pumps, preclude the usefulness of this
configuration. A vaned diffuser between the impeller and the volute may also be used to reduce
radial forces, but, again, at the expense of introducing other complications. This study

addressed only the improvement of volute shape for controlling side loads.

Several other very important factors also contribute to radial forces: (1) those due to
whirl caused by the impeller being displaced from the "design" center of the volute (because of
shaft wear, bearing wear, tolerances, etc.), (2) those due to cavitation which are strongly
dependent on the thermodynamic properties of the pumped fluid and pump design, and (3) those
due to leakage through the impeller seals. These factors have been critically important in
establishing the current design of the HPFTP and the HPOTP for the SSME, although they are

not considered in this investigation.

However, studies of such effects have resulted in the establishment of an extremely fine
laboratory, the Rotor Force Test Facility (RFTF), for studying centrifugal pump operations at
Caltech under NASA/MSFC sponsorship. The outstanding feature of the RFTF is the unique
system which has been developed to measure forces on impeller shafts. This facility was used
to conduct verification tests to support the development of the CFD impeller/volute model

developed in this study.
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2.0 VOLUTE GRID GENERATION

To expedite the optimization of volute geometry, an algebraic grid generator code was
written which contains a small number of adjustable parameters, but which creates a wide
spectrum of volute shapes. As a point of departure and to illustrate the general features of
impellers and volutes, Volute A and Impeller X, which were experimentally tested by Adkins
and Brennen (1988), were chosen for further study. Volute A and Impeller X are shown in

Figs. 4 and 5, respectively.

Two mappings are employed to create the volute grid. The first describes the volute
surface and the second generates the grid. In order to describe the surface of the volute using
a natural physical-to-surface coordinate mapping, the volute is divided into three regions. The
regions are the spiral, discharge and tongue regions. A fourth region, designated the blank
region, adjacent to the tongue and discharge regions can be created in case the second mapping
puts grid lines through the tongue into the wall. These four regions constitute the first volute
mapping. The grid used in flow computation is obtained using a second mapping between the
surface-to-computational coordinates. The user can create an alternate grid topology by creating

a different second mapping. The Grid Code is described in Appendix C.

The volute surface is developed from cross-sections and from contour edges between
them. In the cross-section planes all the regions have H-grids. In the midplane of the contours

the regions are also H, except for the tongue region which is C.

The spiral region can be created using two different methods. The first interpolates
between cross-sections defined at angles along the spiral contour using cubic splines with knots
at the endpoints of the curve segments that make up the cross-section. The first and last angles
encompass 360°. The second method describes the cross-sections in terms of the variables
shown in Fig. 6. These variables are specified by functions of 6 such as: Archimedian spirals
(r = af), log spirals (In r = a#), circular arcs, cubic splines, line segments, and special

functions for ry{6}.
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Fig. 6 Definition of Variables for F(8) Cross-Section
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The discharge region is defined from a series of cross-sections starting at the last spiral
cross-section and extending through a sequence of one or more circular cross-sections. Two sets
of contour edges, one starting from the last spiral contour and the other from the tongue control
the interpolation of the surface grid. For the initial section, the last spiral cross-section is cut
by the tongue region contour and the corners rounded. A circular cross-section is defined at the

end of the discharge contours.

The tongue region is contained within the spiral region, bounded by the last two defined
spiral cross-sections. Beginning from the top of the first spiral cross-section, the tongue contour
arcs around to meet the discharge contour. Options are provided to calculate the actual
tongue/discharge contour intersection point. The contour edges are projected in the +axial
direction onto the exterior surface of the spiral region to create edges that "square off" the
tongue region. The corners are rounded between the top of the first spiral cross-section and the

bottom of the initial discharge cross-section using a rolling ball algorithm.

Figures 7-10 show details of the volute geometry generated with the first mapping of the
grid code. Figure 7 shows the spiral and discharge regions with the tongue left out. Figure 8
shows the tongue section. Figures 9-10 show the grid with the tongue region included. Figure
10 shows details of the blending of the tongue with the other part of the grid. Figures 11-14
show various surface to computational coordinate mappings for creating interior grid points.

Figure 15 shows a mapping of the geometric grid into the computational domain.

Volute A was chosen as a baseline test case for performing a 3-D CFD simulation. It
was expected that the volute geometry would have a large effect on the computed flowfield. If
such is indeed the case, special consideration should be given to volute A since it has already
been constructed. The data available from the volute drawings needed to generate a grid are:
the dimensions of the volute cross-sections at various angles, typically every 45°. A partial
description of the fabrication process follows. A sheet of aluminum was cut into the nine
specified cross-section shapes. The nine aluminum sections were positioned at the appropriate
locations on a flat board. Wood forms were cut and glued between the aluminum sections. The

craftsman sanded the wood forms to provide a smooth transition between the specified cross-

12
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Fig. 8 An Ilustration of Generating the Tongue Surface
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Fig. 9 Volute Surface on One Side of the Midplane

Fig. 10 Volute Surface, Focusing on the Tongue

14
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Fig. 11 Exterior Surface of 3-D Grid, used in Impeller/Volute Coupled CFD Solution

Fig. 12 Exterior Surface of 3-D Grid, Used in Computation with Adkins-Brennen Model
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Fig. 15 Physical to Computation Coordinate Mapping in 2-D Plane
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sections. Then fiberglass was laid over the forms. With regard to constructing a grid of the
volute, the criterion the craftsman had used to determine the shape of the wood forms and their
actual surface profile is unknown. This lack of knowledge required that assumptions be made

in the interpolation process for the Volute A surface.

Grids used for other volute geometries will be discussed subsequently.

3.0 CFD RESULTS

Most of the limiting assumptions made in analytical impeller/volute pump models can be
relaxed by using current CFD technology. However, analyzing 3-dimensional flowfields,
especially when zonal slip conditions at the impeller/volute interface must be accounted for, was
recognized from the onset as being a very computationally intensive process. Therefore, 2-
dimensional impeller/volute flows were analyzed initially to study the computational coupling
at the moving interface. Upon successfully accomplishing such analyses, the full 3-dimensional
simulation of the coupled impeller/volute flowfield was then computed. As expected, the
simulation could be accomplished, but the expense of a single simulation prompted the
development of a more practical solution method. The splitting of the analysis into a separate
description of the impeller flow and of the volute flow appeared to be an excellent procedure for
applying the CFD codes. Practically, one could use the impeller model and interface coupling
parameter developed by Adkins and Brennen (1988) as inlet boundary conditions for the flow
to the volute and construct the 3-dimensional CFD volute model. The Adkins and Brennen
impeller/ volute model is summarized in Appendix A. This procedure was implemented, a
substantial savings in computation time for a single simulation was realized, and parametric
design studies for optimized volute configurations were accomplished. These CFD models were
developed and results of the analyses made with the models are presented in the remainder of

this section.

3.1 The FDNS CFD Impeller/Volute Pump Model

The FDNS CFD code, Chen (1989), simulates 3-dimensional, turbulent flows with the

18
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accuracy required to predict the losses due to the unsteadiness of the volute flow which is due
to vortex shedding from impeller vanes and diffuser blades and the recirculation in the pump.
FDNS treats the full range of flow speeds from incompressible to hypersonic; hence, the
description of either water or dense hydrogen gas required no new development. The
simultaneous treatment of impeller and volute flow requires interpolation across a zonal
boundary; a feature of the FDNS code available when this study started, Chen (1988). In short,
the FDNS flow solver is mature and required no further development for application

to impeller/volute interaction analysis.

Once it can be demonstrated that the steady radial forces can be accurately predicted for
a given configuration, the question can be addressed: How can the volute/diffuser geometry be
modified to reduce these forces? The design tool reported herein provides the methodology for
varying the configuration to minimize or control the side forces. Since such a design tool did
not previously exist, the predictive capability was developed, and the entire procedure
demonstrated by actually designing a test volute, constructing the configuration, and measuring

- its performance to verify the design tool.

The conservation equations solved to simulate the impeller/volute interaction are given
below in curvilinear coordinates. (Note the nomenclature used in these equations is completely
independent of that used to describe the Adkins/Brennen model described in Appendix A.)

Y'(3pq/3t) = a[-0UQ + uGy(8a/dE)VIE; + S, (1)

Where q = 1, u, v, w, k, and e represent, respectively, mass, momentum, turbulent kinetic

energy, and turbulent kinetic energy dissipation. J, U;, and G; are given by
I = a(f,n,f)/a(X,y,Z)

U; = (u/1)(9%/9x;)

G, = (3t/3x)(BE/9x)/]

19
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Also, p = (u + u)/o, is the effective viscosity when the turbulent eddy viscosity is used to
model turbulent flows. The turbulent eddy viscosity is u, = pC,k%e; C, and o, are turbulent
modeling constants. Wall functions are used to reduce the number of grid points which are
required very near the wall. Near wall turbulence models are impractical and unnecessary for
the computations needed to simulate volute/impeller flow in pumps. Appropriate fluid properties
for water, LOX, or dense gaseous hydrogen are used directly, either in tabular form or as

suitable equations of state. The source terms are given by:

0
P, t V[p(uj)x]
1P, + @)
¢ =7 P, + VIn)]
p(P, - €
(Pe/)(C,P, ~ Cye + C,P]Ie) |

An upwind scheme is used to approximate the convective terms of the momentum,
energy, and continuity equations; the scheme is based on second and fourth order central
differencing with artificial dissipation. First order upwinding is used for the turbulence
equations. Different eigenvalues are used for weighing the dissipation terms depending on the
conserved quantity being evaluated, in order to give correct diffusion fluxes near wall

boundaries. For simplicity, consider fluxes in the £-direction only. That is:
OFJof = 05(F,, - F,_)) = (d,o5 - d, o) )
A general form of the dissipation term is given as follows.

Qo5 = 0'5[€1IPU|]i+o.s(qi+1 - q) + [e;(1-e)MAX{0.5ASp(Jul,|v)), 3)
2[pU[} + €;48],,05a;, - 3q, + 3q,,, - 4.2

Different values for ¢, ¢,, and ¢, are used for the continuity, energy and momentum equations,

as shown in Table 1.

20
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Table 1. Dissipation Parameters

Momentum & Energy Continuity
€ dl 0
€ 0.015 0
& 0 dy

where: d;, = REC and d, = 0.005

To maintain time accuracy, a time-centered, time-marching scheme with a multiple pressure
corrector algorithm is employed. In general, a noniterative time-marching scheme was used for
time dependent flow computations; however, subiterations can be used if necessary. The
pressure corrector scheme is described as follows. A simplified momentum equation was

combined with the continuity equation to form a pressure correction equation. This equation is:

apu,/at = - Vp,

or in discrete form:

U’ = - B(AUp)VD’ )

where § represents a pressure relaxation parameter (3 = 10 is typical). The velocity field in

the continuity equation is then perturbed to form a correction equation. That is:

Viou)™ = Vlp"(u® + y)] = 0

or,

Vioy') = - V(pu)* ©)

Substituting equation (4) into (5), the following pressure correction equation is obtained.
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- V(BAL VP) = - V(pu)® (6)

Once the solution of equation (6) is obtained, the velocity field and the pressure field are updated
through equation (4) and the following relation.

pn+1 _ pn + p’

To ensure that the updated velocity and pressure fields satisfy the continuity equation, the
pressure correction procedure is repeated several times (usually 4 times is sufficient) before

marching to the next time step. This constitutes a multi-corrector solution procedure.

The velocity through the impeller is calculated relative to the impeller, transformed to
a fixed coordinate system at the impeller exit, and passed to the volute as a boundary condition
along a zonal boundary. Since the grid points across the zonal boundary do not have a one-to-
one correspondence, a linear interpolation is used for the overlaid grid points. The interpolation
scheme along the zonal interface is applied implicitly inside the matrix solver to obtain better

convergence,

3.2 2-D Volute Simulation

A general unsteady impeller/diffuser interface boundary condition treatment was
developed and tested. The current model can be employed for steady-state or transient
computations; however, the transient simulation would be very computationally intensive. A 2-
D impeller/diffuser test case of Caltech, see Appendix A, was used to develop the computational
model. The Caltech impeller geometry includes a logarithmic spiral blade shape and several
diffuser vane profiles. For this study, a general cyclic boundary condition treatment was also
implemented, based on multi-zone zonal interface solution procedures. This allows the use of

patched cyclic boundaries without overlaid grids.

To establish a feasible procedure for optimizing the volute pressure distribution based on

CFD analysis, a generic 2-D volute test case was generated. A 2-zone volute model was

22



SECA-FR-95-08

formulated with the outer wall contour adjustable through a shape function. The objective of
this calculation was to find a volute outer wall shape that will minimize the net force on the

impeller.

For the 2-D volute test case, the side force optimization algorithm was tested. The
objective function to be minimized is the force on the impeller and the independent variable is
the volute spiral angle. A relaxed version of Newton’s iteration method and a method using
parabolic interpolation were tested. The impeller was replaced by a boundary condition of
constant total pressure upstream of the diffuser. Figures 16-17 show the pressure contours and
velocity vectors for the initial volute geometry. After every geometry perturbation, some
number of iterations are required for a converged solution. For this test, the slope of the force
versus spiral angle was evaluated every 200 time steps, and the geometry updated. Figures 18-
19 show the pressure contours and velocity vectors after 8000 time steps using Newton’s
method. The iteration history of the force is given in Fig. 20. Due to the non-linear nature
of the system, Newton’s method produces severe over-shoots and under-shoots which leads to
slow convergence towards a minimum side force geometry. The second method using parabolic
interpolation was more robust. Figure 21 compares the iteration history for both methods. The
feasibility of the impeller/diffuser flowfield coupling simulation was established, but it was not

practical to continue the calculation to optimize the spiral angle by CFD simulations alone.

The unsteady impeller/diffuser vane interaction simulation was investigated for this same
2-D configuration. A relatively small time step size was used for time accuracy. 5260 time
steps were integrated for one impeller blade passage. The extended two-equation turbulence
model was employed for the turbulent flow computation. Pressure contours of the flowfield
solution after four blade passages are shown in Fig. 22. The pressure time history on three vane
surfaces near the leading edge are plotted in Fig. 23, for the last blade passage cycle. It is

known that for this 5:9 blade ratio, the true periodicity is one complete impeller revolution.

The computation was extended to eight blade passage cycles. Pressure contours of the
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flowfield solution are shown in Fig. 24. Figure 25 shows the time history of the pressure on
the leading edges of three diffuser vanes over the last six blade passage cycles. The effect of
the initial guess is still evident in the pressure history. More computation cycles are required
to wash-out the low frequency disturbances. The unsteady simulation is feasible, but the number

of impeller cycles required to obtain a quasi-steady flow is excessive.

3.3 3-D CFD Simulation of Volute A

The flowfield for Volute A, shown in Fig. 4, was simulated for two representations of
the flow from Impeller X, shown in Fig. 5. The first simulation was for boundary conditions
upstream of the impeller and yielded a fully coupled CFD impeller flowfield prediction. The
coupling consisted of interpolating the impeller exit conditions to serve as the volute inlet
conditions across the zonal interface as described in section 3.1. The second simulation
consisted of using the Adkins/Brennen impeller model and interface matching parameter, 8, to
approximate the impeller/volute coupling. The results of these predictions are given in the

following two subsections.

3.3.1 CFD Simulation of Both Volute A and Impeller X

To utilize an inlet boundary upstream of the impeller, grids for the impeller and the
volute were generated, and the coupled impeller/volute flow was calculated. The impeller grid

and the volute grid are shown in Figs. 26 and 27, respectively.

The flowfield computation was simulated for the design flow coefficient of ¢=.092.
Figures 28 and 29 show the pressure contours and velocity vectors after 6 impeller revolutions.
The solution is not yet periodic, indicated by the impeller force iteration history shown in Fig.

30 for the last 3 impeller revolutions (3000 iterations).

The volute discharge exit was extended further downstream to enclose the recirculation
region that had been observed in the design flow coefficient, ¢=.092, computation, and the

computation continued. Figures 31 and 32 show the pressure contours and velocity vectors.
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Fig. 27 Volute Grid
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Fig. 29 Velocity Vectors
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The impeller force is calculated by integrating the pressure at the impeller exit. The force
iteration history is shown in Figs. 33 and 34 for the last impeller revolution. Figure 33 shows
the force magnitude and its components, F, and F,. The origin is at the volute center with the
x-axis tangent to the tongue. Figure 34 is a plot of the magnitude of the force on an expanded
scale, showing the fluctuation from the impeller blades passing the volute tongue. Figures 33

and 34 also indicate that a fully-coupled 3-D impeller/volute flowfield solution was obtained.

The calculations were repeated for a range of flow coefficients. The time averaged

. . p (6)—p inlet,s .

circumferential pressure profile, ¢,(8)=————"-=, on the shroud and hub sides (front and back,
S pu,

respectively) of the volute at a radius ratio of I/ Timpenier et = 1.08 is shown in Fig. 35 for

¢=.092. The kink in p(f) near 6=15° was believed to be grid dependent. The transition
between the fine grid near the tongue and the coarser grid around the spiral starting at §=15°
was later modified. The calculated force components are shown in Fig. 36 with experimental
values from Adkins and Brennen (1988). The experimental values were obtained by averaging
the force measured by a rotating balance with the impeller placed at four positions 90° apart
along a circular whirl orbit. The calculated F, does not resemble the experimental values. If
the kink in p(f) is flattened, the calculated force was expected to be closer to the measured

force.

Since the kink in the pressure profile mentioned was near §=15°, where the transition
between the fine grid near the tongue and the coarser grid around the spiral occurs, the transition
was improved. The volute drawing was reviewed and some changes made to the grid.
However, obtaining fully coupled solutions requires large amounts of computation time,

therefore an alternate computation scheme was used to continue the investigation.
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3.3.2 CFD Simulation of Volute A using Adkins/Brennen’s Model for Impeller X

To reduce computation time, the impeller grid was removed and Adkins/Brennen impeller
model was used to establish the inlet boundary condition for the volute flowfield. The
Adkins/Brennen impeller/volute pump model and the test data to which it has been compared
is summarized in Appendix A. Briefly, the model assumes that the flow within the impeller
follows a logarithmic spiral. Bernoulli’s equation is integrated along this path. The
Adkins/Brennen impeller/volute model will iterate to the spiral flow angle, given the head rise
across the pump. The impeller model provides a relation between the pressure and relative
velocity magnitude at the impeller/volute boundary in terms of a circumferential perturbation
function, 8. Equation A-6 in Appendix A is the differential equation which defines 8. Using
the experimental head rise across the pump from Adkins (1986), the impeller/volute model was
used to calculate the spiral flow angle (y) needed to use the impeller model as a boundary

condition.

The results from calculations for three flow coefficients, ¢/, =0.8, 1.0, and 1.1 will
be presented, where ¢=.074, .092, and .101, respectively. Figure 37 shows the exterior
surface of the volute grid with the circumferential location labeled on which the pressure profile

will be presented at a tap radius ratio of Tu/T; = 1.08. The circumferential pressure profile,

p(6)- p(0)

2

5 , on the shroud and hub sides (front and back, respectively) of the volute is shown
5 pu,

in Fig. 38. Note that the offset is p(§=0) in this figure. The kink near §=350° is where the

r©)-p,

5 puz2 ’

tap radius crosses the re-entrant flow boundary. The pressure, measured by Adkins

with the impeller placed on a circular whirl orbit of Lwi/T, = 0.016 at the position nearest the
volute tongue is in Fig. 39. No test data are available for a centered impeller. The calculated
force components are shown in Fig. 40 with experimental values from Adkins (1986). The
calculated pressure more closely matches the experiment than the fully coupled CFD solution

presented in the previous section, consequently the force components are also closer to the
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- Fig. 37 Volute Grid, With Pressure Tap Circle Indicated
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measured values. For the design flow coefficient, ¢=.092, Figs. 41-42 show the pressure
contours and velocity vectors. The relative velocity magnitude perturbation functions, 8(8,y),
from Adkins/Brennen impeller model used to specify the inlet velocity to the volute are given
in Fig. 43. The functions obtained using both the Adkins/Brennen impeller and volute models

are shown in Fig. 44.

These results were judged sufficiently accurate to warrant a parametric investigation of
the effect of volute shape on radial forces. The spiral angle of the streamline relative to the
impeller blade, v, will, in general, not be known. For a postulated impeller and volute design,
the fully coupled impeller/volute CFD solution should be used to provide v for the design point
of the pump. As mentioned previously, v should be determined from the head curve for the
pump, and it will be a function of the flow coefficient. However, it is a weak function of flow
coefficient and may be assumed constant for modest volute variations and over a range of flow
coefficients. For large variations in volute geometry, -y should be re-evaluated with the coupled

CFD impeller/volute simulation at the design point (for each volute evaluated).
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Fig. 41 Pressure Contours ¢ = .092

Fig. 42 Velocity Vectors ¢ = .092
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4.0 DESIGN OF A TEST VOLUTE

Even though a small number of parameters are required to specify the volute shape with
the volute grid code (the spiral shape and the angle of the trapezoidal cross-section are the major
parameters, with the filet radii and circular shape of the outside of the cross-section expected
to be of minor importance), a large number of parametric cases would be required to obtain an
optimum volute shape. Also, the primary focus of this study was to develop the design
methodology, not to actually design volutes. Therefore, a limited set of parametric cases were
analyzed, and an interesting, but not optimal, new volute was selected for testing to verify the

methodology.

The predicted pressure distributions indicate that a major source of the radial forces are
the pressure disturbances caused by the tongue. This suggests that the tongue geometry could
be modified to reduce the separation in the discharge duct or that the spiral shape opposite the
tongue could be distorted to balance the disturbance at the tongue. Of course, other strategies
could be used. The promising shapes indicated by the experimental data shown in Fig. 3 could
be investigated. Unfortunately, the specific volute geometries tested to produce Fig. 3 were not
reported; therefore, the entire reconfiguring of the volute would have to be re-done. Due to
the finite funding available for this study, the concept of reducing the tongue distortion and
balancing this effect with volute geometry changes opposite the tongue were the only

optimization factors considered.
4.1 Parametric Studies

Changes were made to the Volute A surface to investigate their effect upon the force on
the impeller. The four volute geometries evaluated are summarized in Table 2. Since these

geometries are quite similar to Volute A, the value of v was held constant. The flowfields for
four flow coefficients: ¢=.074, .083, .092, and .101 were calculated.
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Table 2. Volute geometries
case label cross-section modified | spiral contour
interpolation method | tongue
| baseline spline no spline
2 modified tongue spline yes spline
3 arch spiral 186+ 10 f(©) yes Archimedian
flat .5 spiral
4 arch spiral 18645 f(0) yes Archimedian
spiral

For the first two cases presented, the surface of the spiral region was interpolated
between the defined cross-sections using cubic splines. The defined cross-sections were obtained
from the drawing of a Volute A, which had been tested at Caltech. For the first case, flow
separation was observed on the discharge side of the tongue for all of the flow coefficients
calculated. Consequently, the tongue contour on the discharge side was modified for the second
case. For the above design flow coefficient, the flow separation was drastically reduced, and,
for the other flow coefficients, entirely eliminated The modified tongue was kept for the
subsequent cases. Since the same differences exist between the simulated and the measured

forces for Volute A, the simulated forces were used for these parametric comparisons.

For the last two cases the spiral surface was described using the volute cross-section
geometry previously presented, Fig. 6. The cubic spline which had described the spiral
midplane contour was replaced by two Archimedian spirals connected with a two-point spline
to smooth the transition. For the geometry labeled "arch spiral 186410 flat .5" the spiral
contour was flattened opposite the tongue. The spiral contour is shown Fig. 45-46 using
Cartesian and polar coordinates, respectively. The cross-sectional area in the spiral region and
its derivative with respect to 6 are shown in Figs. 47-48. In Fig. 47, 0 starts at the tip of the

tongue; however, the tongue is not included in Fig. 48.

For each flow coefficient calculated, Fig. 49-52 shows the change in the circumferential
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- p©
pressure profile, M, for the four geometric cases. For the last two cases with the

pU,
Archimedian spiral, the drop in pressure after the tongue was flattened. The calculated force
components are shown in Fig. 53, with the force magnitude in Fig. 54. Except for
&/ byesign=1.1, the geometry changes tried shifted the F,(6) and F,(8) curves but did not

noticeably affect their slope. The tongue modification had the greatest effect on &/ yesign=1.1.

The calculations shown in Fig. 54 were used to select the test volute design described in
the next section of this report. However, since the simulated radial forces indicated such a
strong dependence on volute geometry, another case was analyzed. The grid used for the case
labeled: "baseline: spline” for Volute A was observed to have an unrealistic convergence
immediately after the tongue. A new Volute A grid was constructed from the F{8} cross-
sections using piece-wise continuous circular arcs matched at the locations of the metal guides
in the form upon which the fiberglass shell was cast. The results of this case is shown as
"baseline: 3 point arc” in Fig. 55. The computed forces resulting from this geometry change
are obviously of the order as those caused by the other shape changes studied. The other
geometries studied did not exhibit the unrealistic convergence noted in the baseline case.
However, such sensitivity suggests that the carefully machined metal volutes would be more

susceptible to accurate CFD simulation.
4.2 Selection of the Test Volute

Although more parametric cases would have been valuable, the "arch spiral 186+ 10 flat
0.5" was chosen as the verification case. A somewhat wider broadened minimum region in the
force versus flow coefficient was indicated in Fig. 54, although the minimum was slightly higher
(when compared to Volute A). A design drawing of this volute is shown in Fig. 56. The volute

was manufactured and supplied to Caltech for testing.

The original plan was to manufacture the volute with fiberglass using a similar procedure
to that used to manufacture Volute A. However, subsequent investigation indicated that the test

volute could be made more accurately and for less cost by machining it from aluminum.
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The use of a computer controlled milling machine was required to produce the volute. Such a

machining operation was accomplished by specifying the geometry in an IGES formatted file.

Obtaining an IGES file involves the transformation of the volute surface from one form
to another. The volute grid generator writes the grid out as a plot3d file, a set of discrete
points. The procedure used is to read the plot3d file, extract the surfaces, convert the discrete
point surface to a NURBS (Non-Uniform Rational B-Spline) surface, then write the NURBS
surface in an IGES file format. The discrete points in the plot3d file controls what the surface
in the IGES file actually describes. By obtaining an IGES file with a coarse grid, the created
NURBS surfaces can be compared with the intended volute through a fine grid. The grid
generator was brought to NASA/MSFC, where codes supplied by Mississippi State University
were used to provide the NURBS surfaces and the IGES files. These files were supplied to a

machinist and the test volute was fabricated.
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5.0 EXPERIMENTAL EVALUATION OF TEST VOLUTE

The test volute was evaluated in the Rotor Force Test Facility (RFTF) at Caltech. The
results of these tests are attached as Appendix B.

Figures 57 and 58 show a comparison of the measured and predicted radial forces on the
test volute. The accuracy of the simulation is quite good near the design point. At extremely
high and low flow coefficients, the trends are correct, but the accuracy is somewhat less.
Leakages and other factors not included in the analysis are probably the cause of the differences
observed. The CFD codes used for the design of the test volute are adequately verified by the
experimental measurements. The small geometric differences between the test volute and Volute
A indicate that the CFD analysis is sufficiently sensitive to evaluate design modifications.
Furthermore the verification suggest that good dimensional control must be exercised on

experimentally tested volutes to preclude obscuring important design features.

Figure 59 shows a comparison of the measured and predicted radial pressure distribution

around the test volute. The pressure coefficient is defined as:

2
¢ = @ - p,I0Sp U]

u, is the impeller exit velocity. p,in the FDNS simulation and in Appendix B are not the same.
This difference changes the magnitude of the pressure coefficient; therefore, the measured
pressure profiles were rescaled for comparison in Fig. 59. The obvious differences in pressure
for the two sides of the volute are due to the use of an assumed constant impeller exit velocity
from the hub to the shroud (which results from using the Adkins/Brennen impeller model) and
to leakage effects. The pressure profile fits are reasonable and apparently do not effect the good

force predictions shown in Figs. 57 and 58.
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6.0 CONCLUSIONS

The following conclusions are drawn from this investigation:

The volute grid generator is useful for investigating volute configurations.

Coupled impeller/volute CFD solutions are feasible, but they require excessive

computation time to provide parametric volute configuration studies.

Using Adkins/Brennen’s $-equation for impeller/volute coupling with a CFD volute
simulation provides an accurate and practical model for optimizing volute configurations.
The simulations are very sensitive to the volute geometry specified. The parameter v in
the Adkins/Brennen impeller model should be evaluated with at least one fully coupled
impeller/volute CFD simulation for each major impeller/volute configuration change

considered.

The impeller/volute model described in (3) was verified by experimental measurements
for a single configuration. The agreement between the simulation and experiment is
excellent near the design flow coefficient, and becomes somewhat less accurate away

from the design point.

The design methodology can be used to minimize, or set to a prescribed, value, the

radial forces on a pump by controlling volute geometry.
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7.0 RECOMMENDATIONS

To obtain the maximum benefit from this pump model code, the following

recommendations are offered:

(1)  The grid generator should be extended to provide an option for creating volute surfaces

in an IGES format.

) The pump model should be used in its present form to parametrically study

impeller/volute interactions on radial forces over a wide range of volute configurations.

3) The pump model should be extended to treat vaned volutes, vaned diffusers, and cross-
over ducts for multi-stage pumps. Parametric configuration studies should be made with
this model. Note that the effects of axial velocity gradients at the trailing edge of the

impeller vanes and of rotor/stator interaction are neglected in this pump model.
(4)  The pump model should be extended to treat impeller/volute rotor dynamic interactions

by direct application of the Adkins/Brennen impeller whirl model to CFD volute

simulations. This extension should include applications to fluid bearings.
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APPENDIX A

THE ADKINS/BRENNEN PUMP MODEL

A.1 The Adkins/Brennen Impeller/Volute Interaction Model

To analytically describe the interaction of impeller/volute flows and forces, Adkins and
Brennen (1988) constructed a flow model for the impeller and for the volute which was matched
by iteration at the impeller exit and the volute inlet. This model accounts for whirl, but in this
investigation only impeller centered flows were considered. The impeller flow was modeled
with an unsteady form of the Bernoulli equation. This flow was assumed to be 2-dimensional,
and the whirl speed was assumed constant. The flow was also assumed to follow a spiral path
through the impeller at a fixed angle relative to the impeller. This angle was a function of the
flow rate and the head rise, as required to satisfy an experimentally determined pump curve.
Initial conditions for the impeller flow were no swirl and circumferentially constant total head.
The volute flow was described with a continuity equation, a moment of momentum equation,
and a radial momentum equation. The velocity profile in the volute was assumed to be flat
across a cross-section and vary circumferentially around the spiral. The resulting model
consisted of nine ordinary differential equations which were solved by iteration until pressure
and flow conditions at the interface between the impeller discharge and the volute inlet were
matched. Application of this flow model to the Volute A/Impeller X pump is shown in Fig. A-
1, from Adkins (1986). The model does not closely match the test data, but the proper trends
are predicted.

The Adkins and Brennen pump model was encoded from the listing in Adkins (1986)
dissertation for use as a stand-alone pump model and as a module to provide boundary conditions
for a CFD calculation the volute flow. The Adkins/Brennen impeller submodel describes the

flow between the inlet and discharge of the impeller with a simplified Bernoulli equation;

Pip + 0.5(v* - @1"%) + { . 3v ds" - o | ,. cos{wt-Qt-6"} dr"
at
- w’e |, sin{wt-Qt-6"}r" d§" = F{t} (A-1)
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Fig. A-1 Radial forces on Impeller X in Volute A, theoretically calculated over a wide

range of flow coefficients, and compared to experimental measurements, from
Adkins (1986).
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The geometric variables used are defined in Fig. A-2. The flow in the impeller is assumed to
follow a spiral path with inclination angle v which is fixed relative to the impeller. For a given

flowrate and head rise, the spiral path is described by:

6," = 6" + tan v In{r"/R,} (A-2)

The inclination angle is found by equating the theoretical and experimental head/flowrate

characteristics (Y.,,, in dimensionless form):

Yerp = 0.5[D, {27} + C,V*{27}]
where D, is the volute pressure coefficient and V is the non-dimensionalized velocity in the
volute. D, and V are evaluated with a centered impeller, and C, is defined in terms of the

moments of the volute cross-sectional area.

To account for flow asymmetry, a circumferential perturbation, 38, is imposed on the

mean impeller flow, which is related to the relative velocity in the impeller, v, as follows.

v = [¢QR,7/r"18{0", 1", 0t,wt,e}sec{y} (A-3)

For small eccentric whirl orbits, ¢, 8 may be linearized

B{6",r", 0t wt,e} =B,{0,} + € [B.{0,}coswt+B,{0,}sinwt] (A-4)

64



SECA-FR-95-08

Impeller
Canter

!
!
!

/

Z\4Ioh.1'fe

Tongue

™ - - -

Fig. A-2. Geometry of a Centrifugal Pump Impeller, Adkins (1986).
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By combining equations 1, 3, and 4, and by assuming no inlet swirl and no circumferential total

pressure variation, the dimensionless inlet pressure may be written

Pi‘{Rl’el} =h,"- #RB{0,}[4RB,{8,} + 26'(w/Q)Sin{01-wt}]

- 2E.¢2R2Bo{02}[Bc{02}coswt + 65{02}Sinwt] (A_S)

By combining equations A-3, A-4, and A-5 and neglecting higher order terms,
Bernoulli’s equation may be separated into harmonics with steady, e cos wt, and e sin wt

dependency. The steady term becomes

¢ sec*y[2 In{R} (dB/d6,) + ¢ 8,7 + D,-1=0 (A-6)

The sine and cosine harmonics will not be given here since they deal only with unsteady forces;

they are given in Adkins and Brennen (1988), hence 8, = 8.

The Adkins/Brennen impeller/volute interaction analysis was coded as a stand-alone code,
and Eq. A6 was used to provide inlet boundary conditions for flow into the volute. The
Adkins/Brennen analysis models the volute flow and solves the coupled set of equations for 3,

D,, V, and v by iteration for a measured value of the head rise across the pump.
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A.2 Caltech Pump Test Data

Reports and records at Caltech were reviewed to obtain engineering drawings of the
Rotor Force Test Facility and of the various impeller/volute configurations which have been
studied. Most of the impeller-volute combinations were tested with Impeller X. Table A-1
describes these volutes. The circumferential increase of the cross-sectional area is shown in Fig.
A-3. The magnitude of the side force on Impeller X for these volutes is shown in Fig. A-4,
with the vaneless volutes in part (a) and the vaned diffusers in part (b). These measurements

were reported by Jery (1987).

Two volutes were selected for modeling. The first one studied was a vaneless volute,
for which the grid generation was simpler. Volute A was selected since it was designed to
match Impeller X. Also, wall pressure measurements were taken at the volute inlet with the
impeller displaced from the volute center in four directions (stiffness measurement). Volute D
geometry was used as the basis of a 2-dimensional CFD simulation. No validation data exists

for Volute D other than total force measurements.

A listing of Adkins’ pump model, WHIRL2, was obtained from Adkins (1986), but the
code was not available. The listed code was converted from Basic to Fortran and has been
checked against Adkins’ published solutions. Drawings of Impeller X and Volute A used in the
comparison with Adkins’ results were presented in Figs. 5 and 4, respectively. Software was
written to generate the volute cross-section integrals required as input by WHIRL2. The

integrals were calculated using the cross-sections in Fig. 4; however, the fillet radius at the
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Table A-1

Volutes Tested with Impeller X at Caltech’s Rotor Force Test Facility

Data taken from Jery (1987)

VOLUTE | VOLUTE CROSS SPIRAL | NUMBER | VANE
NAME TYPE SECTION ANGLE OF ANGLE
SHAPE VANES
A VOLUTE | TRAPEZOIDAL 4 0 -
B VOLUTE CIRCULAR - 0 -
C VOLUTE | TRAPEZOIDAL 4 0 -
C VANELESS | TRAPEZOIDAL 4 0 ;
(D-0) DIFFUSER
E VANED ELLIPTIC 5 17 18
DIFFUSER
F VANED | TRAPEZOIDAL 4 6 10
(D-6L) DIFFUSER LONG
G VANED | TRAPEZOIDAL 4 6 15
(D-6S) DIFFUSER SHORT
H VANED | TRAPEZOIDAL 4 12 15
(D-12S) | DIFFUSER SHORT
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Fig. A-3 Volute Cross-Section Area for the Various Volutes Tested
from Jery (1987)
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volute inlet was ignored. Figs. A-5 through A-8 show plots providing a comparison between
the current calculations and results taken from Adkins (1986). The input integrals are given in
Figs. A-5 and A-6. These integrals were interpolated using quadratic and cubic splines for the
Adkins and SECA calculations, respectively. The model results can be compared by examining
the flow perturbation at the impeller discharge and the pressure distribution at the volute inlet
for several flow coefficients as shown in Figs. A-7 and A-8 for Adkins and SECA, respectively.
Notice that the Adkins/Brennen model predicts a static pressure discontinuity at the cutwater.

The conversion and implementation of the Adkins/Brennen code was successful.

The Adkins/Brennen code to model the impeller-volute flow for an impeller whirling on
a circular orbit within the volute was modified to eliminate interaction with the user during the
calculation of the steady, impeller centered, solution. Instead of the user comparing the
computed head rise with an experimental value, after having provided the impeller flow path
angle as input, the program will now search for the appropriate flow angle for a specified head

rise and tolerance.
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Fig. A-6 Calculated Moments of the Volute Cross Section
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A.3 Instructions for Using The Adkins.for Code

A copy of the Adkins/Brennen code for the calculation of only the steady, impeller

centered, flow was provided to NASA/MSFC. An Input Instructions Guide is given below. The

I/O of the code was modified when it was implemented as a subroutine in the volute design

program.

Impeller/Volute Model Geometry

w(r)

fv r2
‘_._:._L.._ I T
cross-section integrals
a f ™ w(r)dr
A@©) = 2—
b,
_ [T
rA(@) = ——
b,r 22
_ [rweer
r2A(e) =
b,r,

w2
b2

relative flow path.
log spiral

f "In (i]w(r)dr
rA(®) = ——\2
b,r,
r, r
f rin [—]w(r)dr
—_— Ta 7'2
rinr A(B) =
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Input files of the volute integrals:

name.ext discrete data

o, A(B) rA®) r’A®) TwrA(8) rinrd(®)

Le. (8(),(aregri(i,k), k = 1,5),i = 1,n)

n = number of specified cross-sections

name.SPL cubic spline fit coefficients
((Cl(lrk)’ CZ(i’k)’ C3(isk)7 C4(i:k)1 i=lsn'l)s k=1:5)

where Spline(§) =
G,k + Co(i,%) (6-6) + Ci(i,k) (0-6)* + C,(1,k) (6-6)°

f in degrees, measured from the volute tongue in the direction of impeller rotation.

Program I/O

Impeller geometry: r,, r,, b,, w, in code

Input:
Number of integration divisions, nd a8=2x/nd
Volute cross-section integral file (discrete data) ’name.ext’
program will read "name.SPL’ for cubic spline fit coefficients
Output file name
Query: store p(8'), B(8,) for §;i=1,nd?

Flow coefficient, ¢
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Find « ()
guess of y

or 2) Enter -1, flow path angle ()

SECA-FR-95-08

Enter the experimental head rise, search tolerance, and an initial

Query: is calculated head rise =experimental value?

If no, continue search, request another guess of y

fori=1,nd+1

If yes, proceed
output: (files appended)
output. MAT ¢ Y Yo F.. F,,
output.PBT ¢ Y Yo F,, F,,
0’1 Dpi Bn
Nomenclature
b, width of impeller discharge passage
r,,0)-
D,(0") pressure coef. at volute inlet = M
5 p(Qr,)?
FoxsFoy components of the steady force on the impeller in the volute frame,
nondimensionalized by p7b,0%r,?
nd number of integration divisions
Pu,Pa upstream, downstream total pressure
Pv pressure at volute inlet
Q volume flow rate
.0, impeller inlet, discharge radius
v, vl radial, azimuthal velocity relative to the impeller
w, external width of impeller discharge
B8y impeller relative radial velocity perturbation
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2
_ 0Qr7B(6)
r - f
Yo
— =-tany rsr<r,
v
r
¥ impeller relative flow path angle
0’ measured in stationary volute frame from tongue.
6, measured in translating (not rotating) impeller frame.

(for centered impeller, ' = 6,)

p fluid density
é flow coefficient = Q/(27r,%b,Q)
Do -
Yo total head coefficient '—2?—%
p(Qr)
Q radian freq. of the impeller (shaft) rotation.
w radian freq. of the circular whirl orbit.

The Fortran source code and sample input file of Adkins/Brennen model are stored in

the /u/te/garyc/volute/adkins directory, located at tyrell.msfc.nasa.gov.
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Radial Force Measurements for the SECA volute

Robert V. Uy
Christopher E. Brennen

California Institute of Technology
Pasadena. Calif. 91125

1 INTRODUCTION

This report contains the results of measurements of the steady radial forces on a centrifugal pump impeller
produced by a particular volute (the SECA Volute) designed by SECA. Inc. of Huntsville. Alabama. under
contract to the NASA George Marshall Space Flight Center. This SECA Volute was designed using CFD
methodology which SECA has developed to handle such flows. The purpose of the present tests was to
determine experimentally the steady radial forces by making measurements in the Rotor Force Test Facility
(RFTF) at the California Institute of Technology. This facility is described in detail elsewhere (Chamieh et
al. 1985, Jery et al. 1985, Brennen et al. 1986, Adkins and Brennen 1988. Arndt and Franz 1986) and will
not be repeated here. For the purposes of the present tests. the fundamental components of the RFTF are
as follows. A centrifugal impeller. Impeller X, is driven by an electric motor at speeds up to 2000rpm. The
impeller is mounted directly onto a rotating internal balance or dynamometer which measures the forces
imparted to it by the impeller. The forces are measured using strain gauges whose output signals emerge
through slip rings and are processed by a bank of instrumentation amplifiers. Since the forces sensed by the
balance are in a rotating frame, it is necessary to resolve them into forces in the laboratory frame. The time
averaged components of the radial forces are as defined in figure 1 where F is in the direction of the volute
cutwater and Fy is perpendicular to this. In section 3, we will briefly describe the impeller and various
volutes used in the present tests.

The radial forces will be presented here in nondimensional form by dividing the forces by prPR3L,
where p is the fluid density, Q is the rotational speed (in radians/sec), R is the discharge radius and L is the
width of the impeller discharge. The non-dimensional forces will be denoted by F; and Fy. The magnitude
of the dimensionless radial force will be denoted by Fy = (F2 + Fyz)%, and its direction, 8, will be measured
from the tongue or cutwater of the volute in the direction of rotation.

2 RADIAL FORCES

The existence of radial forces, and attempts to evaluate them, date back to the 1930s (see Stepanoff’s
comment in Biheller 1965) or earlier. The nonaxisymmetries which produce the radial forces depend upon
the geometry of the impeller and the volute as well as the flow coefficient, ¢. The latter is defined as Q/AQR
where Q is the volume flow rate through the pump and A is the area of impeller discharge. Measurements
of radial forces have been made with a number of different impeller/volute combinations by Agostonelli et
al. (1960), Iverson et al. (1960), Biheller (1965), Grabow (1964), Domm and Hergt (1970), Chamieh et al.
(1985), and Franz and Arndt (1986) among others.

Some typical nondimensional radial forces obtained experimentally by Chamieh et al. (1985) for the
Impeller X/Volute A combination (see below) are shown in figure 2 for a range of speeds and flow coefficients.
Note that the “design” objective that Volute A be well matched to Impeller X appears to be satisfied at a
flow coefficient, ¢, of 0.092 where the magnitude of the radial force appears to vanish.

The dependence of the radial forces on volute geometry is illustrated in figure 4 from Chamieh et al.
(1985) which presents a comparison of the magnitude of the force on Impeller X due to Volute A with the
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Figure 1: Schematic showing the definition of the radial forces. F; and F, within the volute geometry as
seen from the inlet to the pump.
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Figure 2: Radial forces for the centrifugal Impeller X /Volute A combination as a function of shaft speed and
flow coefficient (Chamieh et al. 1985).
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Figure 3: Comparison of the radial forces measured by Iverson, Rolling and Carlson (1960) on a pump with
a specific speed, Np, of 0.36, by Agostinelli, Nobles and Mockeridge (1960), on a pump with Np = 0.61, by
Domm and Hergt (1970), and by Chamieh et al. (1985) on a pump with Np = 0.57.
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Figure 4: Comparison of the magnitude of the radial force () on Impeller X caused by Volute A and by
the circular Volute B with a circumferentially uniform area (Chamieh et al. 1985).
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Figure 5: Schematic of the impeller/volute arrangement in the RFTF used in the experiments of Chamieh
et al. (1985).

magnitude of the force due to a circular volute with a circumferentially uniform cross-sectional area. In
theory, Volute B could only be well-matched at zero flow rate; note that the results do exhibit a minimum
at shut-off. Figure 4 also illustrates one of the compromises that a designer may have to make. If the
objective were to minimize the radial force at a single flow rate, then a well-designed spiral volute would be
appropriate. On the other hand, if the objective were to minimize the force over a wide range of flow rates,
then a quite different design, perhaps even a constant area volute, might be more effective. Of course, a
comparison of the hydraulic performance would also have to be made in evaluating such design decisions.

In the past a number of different configurations of the “seal” at the impeller discharge/volute inlet were
employed during measurements of the Impeller X/Volute A radial forces. Specifically, figures 5. 6 and 7 show
the different configurations employed by Chamieh et al. (1985), Adkins and Brennen (1988) and Franz et
al. (1990), respectively (figure 8 shows the configuration employed in the current tests for both the Volute
A and the SECA Volute tests). Because the leakage flows in this region have an important effect on the
pressure distributions acting on the impeller discharge and on the shroud, the radial forces differ somewhat
for each of these configurations. Further comment on these effects will be included later.

Visualizing the centrifugal pump impeller as a control volume, one can recognize three possible contri-
butions to the radial force. First, circumferential variation in the impeller discharge pressure (or volute
pressure) will clearly result in a radial force acting on the impeller discharge area. A second contribution
could be caused by the leakage flow from the impeller discharge to the inlet between the impeller shroud
and the pump casing. Circumferential nonuniformity in the discharge pressure could cause circumferential
nonuniformity in the pressure within this shroud-casing gap, and therefore a radial force acting on the exterior
of the pump shroud. For convenience, we shall term this second contribution the leakage flow contribution.
Third, a circumferential nonuniformity in the flow rate out of the impeller would imply a force due to the
nonuniformity in the momentum flux out of the impeller. This potential third contribution has not been
significant in any of the studies to date. Both the first two contributions appear to be important.

In order to investigate the origins of the radial forces, Adkins and Brennen (1988) (see also Brennen et
al. 1986) made measurements of the pressure distributions in the Volute A, and integrated these pressures
to evaluate the contribution of the discharge pressure to the radial force. Typical pressure distributions for



Figure 6: Schematic of the impeller/volute arrangement in the RFTF used in the experiments of Adkins and
Brennen (1988).

¢ ——

Figure 7: Schematic of the impeller/volute arrangement in the RFTF used in the experiments of Franz et
al. (1990).
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combination at three different flow rates. Also shown are the theoretical pressure distributions of Adkins
and Brennen (1988).
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Figure 10: Comparison of radial forces from direct balance measurements. from integration of measured
pressures. and from theory for the Impeller X/Volute A combination (from Adkins and Brennen 1988).

the Impeller X/Volute A combination (with the flow separation rings of figure 6 installed) are presented in
figure 9 for three different flow coefficients. Minor differences occur in the pressures measured in the front
sidewall of the volute at the impeller discharge (front taps) and those in the opposite wall (back taps). The
experimental measurements in figure 10 are compared with theoretical predictions based on an analysis that
matches a guided impeller flow model with a one-dimensional treatment of the flow in the volute (Adkins and
Brennen 1988), a theory which is similar in spirit to that proposed by Lorett and Gopalakrishnan (1983).

Integration of the experimental pressure distributions yielded radial forces in good agreement with both
the overall radial forces measured using the force balance and the theoretical predictions of the theory.
These results demonstrate that it is primarily the circumferential nonuniformity in the pressure at the
impeller discharge that generates the radial force. The theory clearly demonstrates that the momentum flux
contribution is negligible.

The leakage flow from the impeller discharge, between the impeller shroud and the pump casing, and
back to the pump inlet does make a significant contribution to the radial force (Adkins and Brennen 1988,
Guinzburg et al. 1990). Adkins and Brennen obtained data with and without the “flow separation rings”
of figure 6. The data of figures 9 and 10 were taken with these rings installed. The measurements showed
that, in the absence of the rings, the nonuniformity in the impeller discharge pressure caused significant
nonuniformity in the pressure in the leakage annulus, and, therefore, a significant contribution from the
leakage flow to the radial force. This was not the case once the rings were installed, for the rings partially
isolated the leakage annulus from the impeller discharge nonuniformity. However, a compensating mechanism
exists which causes the total radial force in the two cases to be more or less the same. The increased leakage
flow without the rings tends to relieve some of the pressure nonuniformity in the impeller discharge, thus
reducing the contribution from the impeller discharge pressure distribution.

3 PUMP, IMPELLER AND VOLUTES

It is appropriate at this point to include a brief description of the pump components used in the present
tests.

Impeller X, which is shown in figure 11, is a five-bladed centrifugal pump impeller made by Byron Jackson
Pump Division of Borg Warner International Products. It has a discharge radius, R = 8.1 cm, a discharge
blade angle of 23°, and a design specific speed, Np, of 0.57.

In past studies frequent use was made of a volute designated Volute A (figure 12) which is a single exit,
spiral volute with a base circle of 18.3 cm and a spiral angle of 4°. [t is designed to match Impeller X at a
flow coefficient of ¢ = 0.092. This implies that the principles of fluid continuity and momentum have been
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utilized in the design. so that the volute collects a circumferentially uniform dischiarge from the nnpeller and
channels it to the discharge line in such a way that the pressure in the volute is circurnferentially uniform. and
in a wav that minimizes the viscous losses in the decelerating flow. For given volute and impeller geometries.
these objectives can only by met at one “design” fAow coefficient. In the present tests measurements of the
forces on Volute A were included in order to provide a point of reference to the previous data base.

Also in the past. measurements were made (Chamieh et al. 1985) with a volute with a circumnferentially
uniform area called Volute B.

However. the purpose of the present tests was to obtain comparable data using SECA Volute. This volute
was fabricated elsewhere and shipped to Caltech. Some minor machining to the exterior was necessary in
order to fit the SECA Volute into the RFTF but this had no effect upon the interior flow. The SECA Volute
was also provided with a circular array of pressure taps on the interior circumference. both on the front (or
flow inlet) surface and on the back (or drive shaft) surface. These were connected to banks of manometers in
order to measure the circumferential pressure distribution within the flow discharging from the impeller and
entering the volute. Similar measurements were carried out in the past on Volute A by Adkins and Brennen
(1988). In this report we present not only measurements of the radial forces obtained using the internal
balance but also pressure distributions obtained using these pressure taps. The pressure distributions will
also be integrated to obtain values for the contributions to the overall radial forces due to nonuniformities
in the circumferential pressure distribution acting on the impeller discharge.

4 MEASUREMENT PROCEDURES

As in all past experiments. “dry” runs (experiments without water in the RFTF) were first conducted in
order to determine the tare forces registered by the internal balance. These tare forces were subtracted from
the “wet” runs to obtain the fluid forces imparted to the impeller by the flow. In addition the buoyancy
force acting on the submerged impeller was subtracted from the wet runs; this buoyancy force was obtained
by manually positioning the impeller in several different rotational orientations.

5 FORCE BALANCE DATA FOR VOLUTE A

The first set of measurements carried out during the current investigation consisted of further measurements
on the Impeller X/Volute A combination in order to provide a point of comparison for the later measurements
with the SECA Volute. Figure 13 presents the nondimensional forces in the z and y directions obtained at
a rotational speed of 2000rpm over a range of flow coefficients. This data is similar to, but not identical to,
previous measurements on the same combination obtained by Chamieh et al. (1985), Adkins and Brennen
(1988) and Franz et al. (1990). This previous data is compared with the current measurements in figures 14
and 15. The differences can be ascribed to the differences in the impeller discharge/volute inlet configuations
shown in figure 5 through 7. Specifically, the configuration used by Chamieh et al. (1985) (figure 5) is
substantially different from that used by Adkins and Brennen (1988) (figure 6) or Franz et al. (1990) (figure
7) since the absence of the flow separation rings reduces the pressure nonuniformity in the impeiler discharge
but increases the pressure nonuniformity acting on the exterior of the shroud. The data of figures 14 and 15
reflect this configurational difference since the data from Adkins and Brennen (1988) and Franz et al. (1990)
is quite similar.

Some additional documentation on the current configuration should be recorded. Referring to figure 8
we note that

o The radial gap is a uniform 0.094in.
e The rear seal axial clearance is a uniform 0.004in.
e The tip leakage axial clearance is a uniform 0.007in.

o The front seal axial clearance was made as uniform as possible but still varied from 0.004in at top
dead center to 0.006in at bottom dead center.

10
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Figure 13: Current measurements of the radial forces for the Impeller X/Volute A combination obtained at
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Figure 14: Comparison of the current measurements of the radial forces for the Impeller X/Volute A com-
bination with those obtained by Chamieh et al. (1985) and Franz et al. (1990).
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Figure 15: Comparison of the current measurements of the radial forces for the Impeller X/Volute A com-
bination with those obtained by Adkins et af. (1988).

Note also from figure 8 that the current configuration differs somewhat from all three earlier configurations.
It has greater similarity to Adkins and Brennen (1988) and Franz et al. (1990) than it does to Chamieh et
al. (1985) and the data of figures 14 and 15 show that the current forces display a similar relationship.

6 FORCE BALANCE DATA FOR THE SECA VOLUTE

The radial forces, F; and F, produced by the SECA Volute are presented in figure 16. Data was obtained
at both 2000rpm and at 1800rpm and it can be clearly seen from figure 15 that the non-dimensional data
for the two speeds is consistent. This has also been our past experience and indicates that Reynolds number
effects upon these results are minimal. Note that the magnitude of the force exhibits a minimum at a
flow coefficient of about 0.09 which seems to be the effective design flow coefficient for this impeller/volute
combination.

Also note by comparing figures 16 and 13 that the SECA Volute yields a small reduction in the magnitude
of the radial force when compared with Volute A. However they both yield very similar results.

7 PRESSURE DISTRIBUTIONS

The circular arrays of pressure taps located on the interior surface of the SECA Volute just inside the volute
inlet were connected to manometer banks and data on the pressure distributions were obtained at two speeds
(1800rpm and 2000rpm) and several flow coefficients. The pressures were converted to pressure coefficients
by normalizing with respect to the dynamic pressure corresponding to the impeller tip speed (the reference
pressure is inconsequential). These pressure coefficients were then plotted against position as represented by
the angle from the cutwater measured in the direction of impeller rotation. Similar plots were constructed
by Adkins and Brennen (1988); a sample was presented earlier in figure 9.

Five different pressure distributions for the SECA Volute are presented in figures 17 through 21, a series
with ascending flow coefficient. Several features of these pressure distributions are particularly noteworthy.
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Figure 16: Measurements of the normalized radial force components. £, and Fy, for the SECA Volute plotted
against flow coefficient. Data is shown for both 2000rpm and 1800rpm.

First though they evolve in a way which is somewhat similar to Volute A (figure 9) they have a distinctively
different shape in which the major pressure rise at low flow coefficients occurs upstream of the cutwater,
while, at higher flow coefficients the pressure decreases fairly uniformly around the circumference.

The data for the front taps seems more consistent than that for the back taps, perhaps because of local
flow separation. However it seems clear that the back tap pressures are significantly higher at lower flow
coefficients, suggesting that, under these conditions, the impeller discharge flow is not precisely radial but
has a component in the axial direction of the inlet flow. This trend seems to fade at higher flow coefficients
and the front and back tap data then yield similar resuits.

8 COMPARISON OF BALANCE AND PRESSURE FORCES

The pressure distributions of the last section were integrated over the area of the impeller discharge (using
the front tap distributions) in order to obtain the contribution of the nonuniformity in the pressure around
the discharge to the radial forces. The magnitudes of the forces obtained in this way are compared in figure
99 with those measured using the internal balance. Data for both 2000rpm and at 1800rpm is included.
Note that the integrated pressure forces constitute about 60% to 80% of the total forces measured by the
balance.

A second comparison between the balance measurements and the integrated pressure forces is included
in figure 23 where the individual components of the forces are presented. Note that the force contributed
by the discharge pressure seems to have a somewhat different direction from the additional forces (probably
acting on the shroud). This results in a different variation of Fr with flow coefficient.

9 CONCLUSIONS

The radial force data obtained for the SECA Volute using both the internal balance and integration of the
pressure distributions suggests that the SECA Volute is yields marginally smaller forces than the logarithmic
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Figure 17: Pressure distributions for the SECA Volute operating at 18007pm and a flow coefficient of 0.074.
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Figure 18: Pressure distributions for the SECA Volute operating at 2000rpm and a flow coefficient of 0.079.
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Figure 19: Pressure distributions for the SECA Volute operating at 1800rpm and a flow coefficient of 0.092.
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Figure 20: Pressure distributions for the SECA Volute operating at 2000rpm and a flow coeflicient of 0.098.
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Figure 22: Measurements of the magnitude, Fy, of the radial force for the SECA Volute obtained at 2000rpm
and at 1800rpm. Both balance measurements and pressure integration measurements are shown.
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spiral Volute A but the differences are not large.
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Operational Instructions for the

Volute Geometry Generation Code
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Discussion
The volute grid generation code that was developed as part of this contract is contained
on the UNIX tar tape VOLO1.TAP that is a part of the final documentation and deliverables.
The executable is named gdv and can be generated using the makefile - mkgdv. The input data
files required to execute the code are: Coordinate mapping file, geometry file, and a grid
stretching file. The input files contained on the tar tape that are used in this section to
demonstrate the operation of the code are: volnrn.dat, vol_bud.dat, volstr.dat, respectively.

Tables 1-3 list these three files for the sample case described in this Appendix.

The grid code is an interactive code that responds to user responses to queries by the
code. The operation of the code requires two cycles through the mapping portion of the code
which generates two files that describe the volute surface using a physical-surface coordinate
mapping natural to the spiral, discharge and tongue regions. The first mapping cycle generates
the mapping file that describes the surface of the volute except for the tongue region. The
output file for the first mapping is named by the user (in the sample case - vcp_bud.gi). This
file is subsequently used in the first grid generation cycle. The second mapping cycle defines
the tongue area surface. This cycle outputs a second user specified mapping file (sample case -

vem_bud.gi), that is subsequently used in the second cycle through the grid generation module.

After the two mapping cycles are completed and control has returned to the top manu,
the user should exit the code since there is presently a "bug" in the code that does not allow
cycling through the grid portion until all the files are closed. The user can then re-execute the

code and proceed to perform the actual grid generation and preparation of the FDNS grid file.

The first cycle through the actual grid generation part of the code requires the user to
enter the first mapping file name (jep_bud.gi). The code will also ask to enter a file name to
store the grid data. The user should enter a file name for this first cycle (vep_bud.b) as this
output file can be used by the second cycle as an input file to avoid having to regenerate this
data during the second cycle. After the first cycle has been computed, the grid file generated
(vep_bud.b) and control returned to the top menu, the user should select option b to specify the

name of the binary grid file (jcp_bud.b) in order to retrieve the previously generated grid data.
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Once this has been accomplished, the user then runs the grid generator a second time by
inputting the second mapped file name (vem_bud.gi). Both cycles through the grid generation
have prompts for saving intermediate files for debug purposes. The user may or may not save
these files except for the second cycle where the user is asked: ’Store internal grid for
nreg=6?." In this case, the user must respond with 'y’ in order to generate the FDNS grid file.
The FDNS file is output to file vem_bud.vé6 for the sample case shown. The FDNS file will
always have as a first part of the file named the same as the first part of the second mapped file
name. The FDNS grid file is in the binary format type for FDNS.

Table A-4 lists all the prompts and responses that are required to generate an FDNS grid

for the sample case.

In order to simulate a volute flowfield, users need to run the grid generator,
/u/te/garyc/volute/gridgen.ex located at tyrell.msfc.nasa.gov, to construct numerical grids.
The volute grid generator will create a file which contains the numerical grid coordinates. The
initial flowfield must be estimated directly by the user. Once the grid generation is completed,
rename (or link) the file which contains grid coordinates to fort.12, and rename (or link) the file
of initial flowfield to fort.13, which are the default Fortran units where the FDNS code reads
in the data of grid coordinates and flowfield. After the above steps are completed, users can
execute the FDNS flow solver, /u/te/garyc/volute/xfdns located at tyrell.msfc.nasa.gov. The
details of running the FDNS code are described in the FDNS user’s guide (1993).
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Table A-1 Listing of Sample Problem Coordinate Mapping Input File - volnrn.dat

# nrng_region for grid and mapping generators
# first character: #-comment

# s,t,d, nr_spiral,tongue,discharge
# m,c nr_mapping: theta,c

# n-quit

# s nr_spiral

# 1,5,8,11,15,9,9,9,9,9

# 1,5,8,10,12,14,16,18,10,10

# 1,4,7,10,13,16,19,22,25,27

# 1,3,0,4,7,8,9,11,10,10

# 1,3,5,6,7,8,9,11,10,10 before inlet fillet

#s nr_spiral test inlet fillet, fillet conv

# 1,3,6,9,11,9,9,9,9,9

# 1,7,0,8,11,12,13,15,10,10

# 1,4,7,10,13,16,19,22,25,27

# spiral j should have j4-j2 > j8-j7

s nr_spiral
1,3,6,9,11,9,9,9,9,9
1,3,0,7,8,0,9,10, 10,10
1,4,7,10,13,16,19,22,25,27

#mar 1,7, 0, 0,17,19, 0, 0,30,32

# 1,3,0,7,8,0,9,11,10,10

#k 1,6, 0, 0,16,18, 0, 0,29,31

t nr_tongue
1,3,6,9,11,9,9,9,9,9
1,3,3,7,9,10,10,10,10,10
1,3,6,9,11,10,10,10,10,10

d nr_discharge
1,3,6,9,11,9,9,9,9,9
1,3,6,9,11,10,10,10,10,10
1,2,2,5,7,7,9, 9, 9,17

#d nr_discharge ted: plot3d

# 1,3,6,9,11,9,9,9,9,9

# 1,3,6,9,11,10,10,10,10,10

# 1,5,5,10,21,21,24,24,24,27

# cheat in second mapping, replace d(10,3)=17 with a smaller number

# to shorten straight pipe

b nr_blank
1,3,6,9,0, 11,9,9,9,9
1,2,2,2,0, 5,10,10,10,10
1,2,2,2,0, 7,10,10,10,10

#z nm_thetz theta_rv=nang

# 1,1,1,1,12, 10,10,10,10,10,10,10

# 1,9, 0,28,28,28,39,42,45,45,79,83
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Table A-1 Listing of Sample Problem Coordinate Mapping Input File - volnrn.dat

Continued

# 1,2,1,10,11, 10,10,10,10,10,10,10
z nm_thetz theta_rv=nang ys 3-23-94
L,1,1,1,12, 10,10,10,10,10,10,10
1,6, 0,24,28,28,39,44,54,54,116,122
1,2,1,10,11, 10,10,10,10,10,10,10
#] recirc 1,17, 0,47,51,51,62,66,74,74,116,122
#j use 1,9, 0,24,28,28,39,44,54,54,116,122
# 1,6, 0,24,28,28,39,44,54,54,116,122
#2 nm_thetz theta_rv=nang ys 3-23-94, vol_caf shorten pipe
# L1,1,1,12, 10,10,10,10,10,10,10
# 0,1, 0,19,23,23,34,39,49,49,111,117
# 1,2,1,10,11, 10,10,10,10,10,10,10
n
22 va_yxsu before 4-22-94
1,9, 0,24,28,28,39,44,54 54,116,122
z nm_thetz theta_rv=nang
1,1,1,1,12, 10,10,10,10,10,10,10
1,9, 0,28,28,28,39,42,54,54,116,122
1,2,1,10,11, 10,10,10,10,10,10,10

¢ nm_c around tongue
1,1,1,1,10, 10,10,10,10,10
1,15,20,22,25,28,60,60,67,81
1,1,1,1,10, 10,10,10,10,10
m nm_thetb
1,5,7,7,13, 9,9,9,9,9
1,4,4,7,37,43,49,63, 10,10
1,1,1,1,10, 10,10,10,10,10

cheat
d nr_discharge
1,3,6,9,11,9,9,9,9,9
1,3,6,9,11,10,10,10,10,10
1,2,2,5,7,7,9, 9, 9,12

0,0,1,15,15,15,26,29,32,32,66,70
z nm_thetz
1,1,1,1,12, 10,10,10,10,10
1,15,19,19,30,33,35,35,64,68
1,15,15,15,26,29,31,31,64,68
1,1,1,1,11, 10,10,10,10,10
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Table A-1 Listing of Sample Problem Coordinate Mapping Input File - volnrn.dat

n

m nm_thetb
1,5,8,8,15, 9,9,9,9,9
1,4,4,7,37,44,51,65, 10,10
1,1,1,1,7, 10,10,10,10,10
m nm_thetb
1,8,11,21,21, 9,9,9,9,9
1,3,4,7,17,27,37,45, 10,10
1,1,1,1,10, 10,10,10,10,10
#m nm_theta
# 1,4,5,5,9, 9,9,9,9,9
# 1,3,4,7,17,25,27,34, 10,10
# 1,1,1,1,7, 10,10,10,10,10
# 1,3,5,7,17,25,27,34, 10,10
¢ nm_c around tongue
1,1,5,5,9, 9,9,9,9,9
1,8,11,12,14,14,25,25,29,36
1,1,1,1,7, 10,10,10,10,10

Continued
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Table A-2 Listing of Sample Problem Geometry Input File - vol_bud.dat

restart aw(
baseline: spiral contour 3 pt arc  NOT 1/8 inlet fillet
rfc conv fixed with ishap91
csectv(l,1)=hv use correct wr replaced .31 w/ .32
hv from drawing hv values wr fillet
volute dwg rw=8.62 xv=5.8 rv(360)=5.79
tongue from 3 point arc from drawing
straight pipe extension 1 & m at housing chamber dwg coor, flange exit
#v R2 B2 R3 WR R4 DELRNG
# 3.1875 .62 3.3 784 3.425 0.
#v R2 B2 R3 WR R4 IVLINRL RVLINRL
# 3.1875 .62 3.3 784 3.425 0 125
v RI/R2 R2 B2 R3 WR R4 IVLINRL RVLINRL
S5 31875 .62 3.3 784 3.425 0 125
# spiral cross-section control edges not use eccentricity yet,
# use non-zero value, else kdschrg=1 spline t0=0
T

T I W W W I N W R

12

1 711 111-1-1-1-1-1 40. 0.328 0. 0. .0625
0 40. 00003 0 00 091 40. 0.328 0. 0. .1875
2 45 40440 0-1-100 40. 0.52 .09004 0. .1875
0 50. 00004 0 00 092 40. 0.52 .09004 0. .1875

0 41 0. 0.

3 9. 77777 0 3-1051 40. 0.87 11114 0. .1875
-.441070D+00 0.140827D+00 0.000000D + 00

4 135. 10 0101010 0 -1-1 0 6 40. 1.18 12984 0. .25
4 10 0. 0. o
5 180. 1313131313 51 3-1 051 40. 1.44 .1455] 0. .25
-.360073D+00 -.199665D+00 0.000000D +00
6 225. 16 0161616 0 -1-1 0 6 40. 1.69 .16059 0. .3125
4 10 0. 0. 0.
7 270. 1919191919 0 3-1 051 40. 1.89 17265 0. .3125
0.150534D+00 -.293009D 400 0.000000D +00
8 315. 22 0222222 0 -1-1 0 6 40. 2.11 18592 0. .375
4 10 0. 0. o
9 360. 2525252525 0 3-1 0-1 40. 2.49 .20883 0. .375
0.130232D +00 0.489394D+00 0.000000D +00
10 367. 2727272727 51 6 6 151 40. 2.5436 .21207 .1 .375
4 3 4 0. 0. 5.
22 10 0. 0. o0
# spiral surface splines along theta
#  if use control, fix grvc nrnge(6,ned).le.kl spline spans entire region
s
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Table A-2 Listing of Sample Problem Geometry Input File - vol bud.dat
(Continued)

2
1 9 6 22 104 0 0.
910 6 42 103 4 5.
# t//c2//c3//c4
# ¢2 be for rv(theta) spline at theta(1) n=nat bc s=specify spiral angle
# c3 tongue center, radius r=specify radius c=specify center
# fit arc between tongue and discharge edges f=fix radius e=fix endpt
# c4 tongue/discharge interface follow curve until tangent to discharge edge
# c=follow tongue circle s=circle and spiral spline = don’t
# before 3.72 .446 0. 12 0.0 1875
tsrc tongue circle center (x,y,z), radius, spiral angle, rfi_d
3.7254 .451 0. 1246 87.27 1875
dl discharge exit: tongue wall
e volute dwg rw=8.62
1 5 0.244493D+01 0.826600D+01 0.000000D +00
d2 discharge exit: casing wall
e volute dwg rw=8.62
1 4 0.580000D+01 0.637686D+01 0.000000D +00
e housing dwg rw=8.625
1 5 0.575764D+01 0.860657D+01 0.000000D +00
f1 flange exit: tongue wall
e housing dwg
0.177287D+01 0.123214D+02 0.000000D +00
e q=22
1 10 0.911767D+00 0.221638D+02 0.000000D +00
f2 flange exit: casing wall
e housing dwg
1 7 0.575764D+01 0.126700D +02 0.000000D +00
e q=22
1 10 0.489655D+01 0.225124D+02 0.000000D +00
n
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Table A-3 Listing of Sample Problem Grid Stretching Input File - volstr.dat

# volute
# use ’#’ for to indicate comments
a use 'a’ to indicate start of node distribution stretching parameters
1 12 24 0.400000D+01 0.000000D+00
0 0 0 0.000000D+00 0.000000D+00
6 24 22 0.000000D+00 0.070000D+00
24 28 14 0.000000D+00 0.100000D+00
28 39 24 0.400000D+01 0.000000D+00
44 54 21 0.300000D+00 0.000000D+00
116 122 22 0.000000D+00 0.200000D+00
0 0 0 0.000000D+00 0.000000D+00
1 11 24 0.400000D+01 0.000000D+00
0 0 0 0.000000D+00 0.000000D+00
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Table C-4 Sample Execution of Volute Grid Generation Code

av310 [/usr2/ron/grid/opt] gdv
——== new gdyv e
c: create mapping
g: create grid
b: read existing grid data
n: execute options selected
r: reset program
Q: Quit program

select option c
Select mapping:

p:
cC:
a:
b:

RN SR O B o

LA I TR

N
"

o}
enter
enter
ernter
enter

physical--surface coordinate
cross-section

Adkins' area integral defined spiral c-sections
Adkins' area integral along spiral region
discharge area integral

volute contour edge iges file

3 point arc spiral contour

curvature of spiral c-sections

second volute mapping diges surfaces
psc_surface tongue region

Adkins' impeller/volute mode]l

Adkins' model and restart flowfield file
mapping c zone: tongue')

file for nrn data volnrn.dat

file for volute geo data vol_bud.dat

idim (2-surface 3-volume) 2

file for mapping (don't write= ) vep_bud.gi

select option n

P
~ .

b:
n:
4

Q:

Create mapping

cooraa e geetd

read existing grid data
exacute options selected
reset program

quit program

select option c
Select mapping:

p:

N

physical--surface coordinate

cross-section

Adkins' area integral defined spiral c-sections
Adkins' area integral along spiral region
discharge area integral

volute contour edge iges file

3 point arc spiral contour

curvature of spiral c-sections

second volute mapping 1iges surfaces
psc_surface tongue region

Adkins® <Ympeller/volute mode

Adkins' model and restart flowfield file
mapping c zone: tonoue')
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Table C-4 Sample Execution of Volute Grid Generation Code (Continued)

enter node stretching file (none= ) volstr.dat
enter idim (2~surtace 3-volume} 3
enter file for mapping (don't write= ) vcm_bud.gi
enter edge shape for interface 1-line, 3-arc, 8-log (center at tongue)
and (2) theta at r2,rv (deg) for interface between tongue and spiral regions
8,360.,360.
add edges to pack grid near tongue
and to smooth re-entrant +interface (if not line)
node distribution along spiral on r2
nr: 44 tongue 54 pack tongue 116 smooth 122 re-entrant
angle: 7.00 52.26 332.ah 360.00 uniform dist
enter pack tongue and smooth angles (none=0,0) 30.,340.
add edges along r to adjust non-uniform arclength of spiral surface
in psc_surface interpolation, assume uniform spacing

enter number of edges between thet_a 30.00 and _b 340.00
>0 will input theta, <0 calculate equidistant 4
entear 4 intermediate (approx) angles (deg)
60,90,180,270
c: create mapping
g: create grid
b: read existing grid data
n: execute options selected

r: reset program
g: quit prodgram
select option qQ
‘av31o0 [/usr2/ron/grid/opt] gdv

—-—=—= new ady -

c: create mapping

g: create groid

b: read existing grid data
n:  axacute options selected
r: reset program

g: guit program
select option
select option <

£ apping ~ile vio
EQQ:: ?i?g to store grid data (don't= ) vep_bud.b
select option n
Store edge coordinates for nrea- 2 ? (def=n) n
Store dinterna! grid for nreg= 2 ? (def=y} n
Store edge ccordinates for nrag= 3 ? (def=n) n

g gl

Store intern=! arid for v-eag- 3 2?2 (defzy) n
store (r,theta,z21? (def-n: n

c: create mapping

q: create grid

b: read existing grid data

n: execute options selected

r: reset progeam

qg: quit program
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Table C-4 Sample Execution of Volute Grid Generation Code (Continued)

select option b
enter grid data file vep_bud.b
select aption n

c: careate mapping

g create grid

b read existing grid data

n: execute options selected

r reset program

q: gquit program

elaect aontion g

nter mapping file vem_bud.gi
~=1nc' option n
Store edge coofrdinates for nrea= 4 ? (def=n)
Store internal qi <o tar ooagT 407 fejat=yd
Store edge coordinates for nreg= § ? (def=n)
Store internal agrid for nreg= 6 ? (def=zy)
store (r,theta,z)? (def=n)

c: create mapping

a create oid

b read existing grid data
n: execute options selected
r reset program
a quit program
lect option q

ORIGINAL PAGE IS
OF POOR QUALITY
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